
248 LE G R O U P E  P1 ET SES SOUS-GROUPES.  II 

Ces diff6rentes formules nous ont permis de d6nom- 
brer les sous-groupes isomorphes de F(P1)  et F ( p l )  
pour tous les indices comprise entre 2 et 30 (Tableaux 2 
et 3). 

III. Liste de sous-groupes 

Dans le Tableau 4 figurent les sous-groupes iso- 
morphes de F(P1)  pour tous les indices compris entre 2 
et 7. Chaque sous-groupe est identifi+ par un num6ro 
suivi (entre parenth+ses) par les mailles, 6ventuelle- 
ment confondues, qui correspondent aux matrices de 
passage T I a TVI; ces mailles +l+mentaires sont 
exprim6es en fonction de la maille 616mentaire (A,B,C) 

Tableau 5. Sous-groupes isomorphes de F ( p l ) p o u r  
tous les indices compris entre 2 et 7 

Indice 2 
[I(2A,B); 2(A,2B)]; [3(2A, B + A)(A + B, 2B)]. 
Indice 3 
[I(3A,B); 2(A,3B)]; [3(3A, B + A)(A + B, 3B)]; [4(3A, B - A) 
(A - B, 3B)]. 
Indxce 4 
[ I(4A,B); 2(A,4B)]; [3(4A, B + A)(A + B, 4B)]; [4(4A, B -  A) 
(A - B, 4B)l; [5(4A, B + 2A)(2A + B, 2B); 6(A + 2B, 4B) 
(2A, 2B + A)]; [7(2A, 2B)]. 
Indice 5 
[I(5A,B); 2(A,5B)]; [3(5A, B + A)(A + B, 5B)]; [4(5A, B - A) 
(A - B, 5B)]; [5(5A, B + 2A)(A - 2B, 5B); 6(5A, B - 2A) 
(A + 2B, 5B)]. 
Indice 6 
[l(6A, B); 2(A,6B)]; 3(6A, B + A)(A + B, 6B)]; [4(6A, B - A) 
(A -- B, 6B)]; [5(6A, B + 2A)(2A + B, 3B); 6(A + 2B, 6B) 
(3A, 2B + A)]; [7(6A, B - 2A)(2A - B, 3B); 8(A - 2B. 6B) 
(3A, 2B -- A)]; [9(6A, B + 3A)(3A + B, 2B); 10(A + 3B, 6B) 
(2A, 3B + A)]; [1 l(3A, 2B); 12(2A, 3B)]. 
Indice 7 
[I(7A,B); 2(A,7B)]; [3(7A, B + A)(A + B, 7B)I; [4(7A, B - A) 
(A - B, 7B)]; [5(7A, B + 2A)(A - 3B, 7B); 6(7A, B - 3A) 
(A + 2B, 7B)]; [7(7A, B - 2A)(A + 3B, 7B); 8(7A, B + 3A) 
(A - 2B, 7B)]. 

de F(P1).  Les sous-groupes dont les mailles 616men- 
taires pr6sentent des analogies (6change des r61es des 
vecteurs A, B, C) ont +t~ regroup+s entre crochets. 
Pour chacun des indices 2, 3, 5, 6, 7, les sous-groupes 
sont 6quivalents par les automorphismes de F(P1)  et ne 
forment donc qu'une seule classe. Pour l'indice 4, les 28 
premiers sous-groupes forment une classe d'6quiva- 
lence, les 7 derniers une autre classe (Billiet. 1979). 
D'une mani+re analogue, le Tableau 5 donne les 
sous-groupes isomorphes de F ( p l )  pour tous les 
indices compris entre 2 et 7. Les sous-groupes ne 
forment qu'une seule classe par rapport  aux auto- 
morphismes de F ( p l )  pour chacun des indices 2, 3, 5, 
6, 7. Pour l'indice 4, les 6 premiers sous-groupes 
forment une classe, le dernier sous-groupe forme une 
seconde classe/l lui seul. 

I1 convient de remarquer que les mailles convention- 
nelles des sous-groupes isomorphes de F(Pi)  sont 
donn~es par les m6mes matrices que celles des sous- 
groupes isomorphes de F(P1),  c'est-A-dire par  le 
Tableau 4, l'origine des sous-groupes 7(Pi) &ant plac6e 
en (ki/2, k2/2, k3/2; k i entier) par rapport  au rep~re 
conventionnel de F(P1)  (Sayari & Billiet, 1977). D'une 
faqon analogue, les sous-groupes isomorphes de F(p2)  
sont donn6es par le Tableau 5, l'origine 6tant plac6e en 
(k~/2, k2/2; k i entier) (Sayari, Billiet & Zarrouk,  1978). 
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ization, there is no discontinuous measure of agreement 
such as is found in studies of reduced cells. Although 
the Niggli reduced cell is uniquely defined for every 
lattice, the angles of the reduced cell may vary wildly 
with minor lattice distortions. It is proposed that 
lattices be described by the sets of seven parameters 
consisting of reduced-cell edge lengths, the lengths of 
edges of the reduced cell of the reciprocal lattice, and 
the reduced-cell volume. 

© 1980 International Union of Crystallography 
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Introduction 

Recently we were asked to consider the properties of 
lattices for a practical problem. We were invited to 
prepare a computer program capable of searching the 
data in the Determinative Tables (Donnay & Ondik, 
1973) to find matches to measured unit cells. Among 
the design criteria was the specification that the search 
should find all cells closely related to the measured one. 
This includes cells for which the symmetry has been 
misidentified or for which a slightly different form or 
symmetry has been reported, or for which the sym- 
metry or cell parameters have been modified by 
substitution of one atom type for another. The data 
base contains approximately 50 000 compounds. This 
large number would make it impractical to search 
among all of the related lattice types since this would 
mean that several or many searches would be required 
for each cell. Searches on reduced-cell lengths and 
volume only would put together cells which were not 
really related to one another; a four-parameter 
specification of cells which require six parameters 
cannot be unique. In order to deal with this problem, 
we were led to the study of reduced cells and the con- 
sideration of the various invariants of lattices. 

Let a 'lattice' be defined as a collection of points, 
each of which is reachable from any of the others by an 
integral combination of three given vectors. It should be 
noted that lattices contain identical points, and we shall 
therefore be concerned only with metric properties and 
not structural or diffraction properties. When we dis- 
cuss symmetry, we will use only the 'metric symmetry' 
of the lattice. The literature contains several 'reduced 
cells' for standard presentation of lattices (Niggli, 1928; 
Delaunay, 1933; Buerger, 1957). A 'Buerger reduced 
cell' of a lattice is a set of three lengths (a,b,c) and three 
angles (~t,/3,7) such that vectors a,b,c with lengths a,b,c 
respectively, with angle 7 between a and b, c~ between b 
and c, and/3 between c and a, yield the original lattice, 
and such that there exist no three shorter vectors which 
will do so. That is, a,b,c are the lengths of the three 
shortest non-coplanar vectors in the lattice. However, 
there may be as many as five alternate sets of angles, 
hence five Buerger reduced cells (Gruber, 1973). If 
there are alternate sets of angles, one such Buerger 
reduced cell may be selected as the reference cell by 
such criteria as the standardized presentation of the off- 
diagonal terms of the matrix tensor (the Niggli reduced 
cell, see Mighell, Santoro & Donnay, 1969) or 
minimum total surface area of the cell (Gruber, 1978). 
Unfortunately, for each of these criteria, there are, in 
practice, cases in which very small changes in the lat- 
tice yield very large, discontinuous jumps in the 
reduced-cell angles. This occurs in spite of the fact that 
each of these latter two reduced cells is unique to its 
particular lattice. Such discontinuities are widely recog- 
nized among crystallographers and have been 
described: 'The special conditions commonly occur. 

They are essential, and they must be satisfied to avoid 
confusion . . . .  Errors that frequently occur in reduction 
procedures are caused by: . . . (b)  failure to consider the 
[effect o f ]  experimental error on the scalars when 
applying the inequalities inherent in reduction . . . '  
(Mighell, 1976), and ' . . .  in some cases two reduced 
cells satisfying the convention may result . . . '  (Lawton 
& Jacobson, 1965). It is important to note that the 
'special' conditions (Mighell, Santoro & Donnay, 
1969) in Niggli reduction are specified only for those 
cases in which multiple Buerger cells occur. Thus the 
occurrence of such cases depends partly upon the ac- 
curacy of experimental techniques. Further, since non- 
integer numbers computed by different paths usually 
differ slightly in the one or two least significant digits, 
the occurrence of 'special' conditions also depends 
inherently on computer accuracy, algorithms, path of 
computation, and a programmer's decision concerning 
when two numbers are to be considered equal. This 
state of affairs arises not from shortcomings in 
methods of selecting reference cells, but rather from the 
use of cell angles as parameters for cell comparison. 
We suggest an alternative set of lattice parameters 
(a,b,c,a*',b*',c*',V, where each quantity refers to the 
parameter of the reduced cell in the appropriate space) 
which, by avoiding the use of cell angles, avoids the 
instabilities associated with previous approaches. In 
this formulation, approximately equal parameters will 
be found for lattices which approximate each other. We 
have not been able to prove the converse proposition 
which we state here as a theorem lacking proof. 

Theorem: the set of  reduced-cell lengths in real 
space, the reduced-cell lengths in reciprocal space, and 
the reduced-cell volume uniquely define the lattice. 

A corollary is that any two lattices for which the 
seven parameters are nearly equal are closely related 
lattices. While we cannot prove this theorem, we 
present an algorithm by which all Buerger cells 
corresponding to a given set of parameters may be 
found. An extension of this approach for the identifi- 
cation of Bravais lattice type is also outlined. 

Method 

Choose a primitive cell within the lattice and perform 
Buerger reduction. Compute the cell reciprocal to a 
primitive cell, and reduce that reciprocal cell. Call the 
three reduced-cell lengths a,b,c and the reduced-reci- 
procal-cell edge lengths a*', b*',c*', chosen so that a < 
b < c and a*' < b*' < c*'. Take these six numbers and 
the reduced-cell's volume, V, as the identifying 
parameters of the lattice. Although part of the relation- 
ship between the real and reciprocal lattices is lost upon 
reducing and upon putting each set of lengths in 
ascending order, these steps are necessary for stability 
under perturbation. Reduction is clearly necessary in 
each space for stable, identifiable results. Arbitrary 
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ordering is required; in many cases there is no clear 
relationship between the lengths in the two spaces. To 
attempt to maintain the relationship between the real 
and reciprocal axes would lead to instabilities similar to 
those found for angles. For lattices in which several 
Buerger reduced cells exist, the sets of lengths of the 
edges of these alternate cells are the same (Gruber, 
1973). The same, of course, holds for the reciprocal 
lattice. The volume is required in the set of parameters.  
If  it is not included, there are many regions in which 
different lattices can be found that agree in the six 
length parameters,  but which differ in the relationship 
of the set of lengths in one space to the set of lengths 
in the other. Thus, for any given cell, our seven 
parameters are unambiguously defined. In the next 
section we demonstrate that they are stable under 
perturbation of the lattice. 

It remains to specify a method for obtaining cell 
angles from our seven parameters.  From the equation: 

(V/abc) ~ = 1 - (cos 2 a + cos 2 fl + cos 2 T) 

+ 2 cos a cos fl cos 7, 

with a and fl regarded as given, there are up to two 
solutions for cos ),. For each such solution, we may 
calculate a reciprocal cell. By reducing the reciprocal 
cell, we calculate parameters to compare with our given 
a*',b*',c*'. Taking the sum of the squares of the 
fractional differences of each of these latter three para- 
meters as a figure of merit, we need only perform a 
global minimization of that figure of merit on the two- 
dimensional a,fl plane. Figs. l (a)  and l(b) are contour 
plots of this figure of merit for the positive-square-root 
solutions for cos ), for the cell used as an example by 
Gruber (1973). The negative-square-root solution is the 
same mirrored at 90 ° in either a or fl (however, the 
values of ), differ). The 20 minima correspond (after 
relabelings and chirality changes) to the five cells given 
by Gruber (1973). 

Perturbation stability and error propagation 

We first recapitulate the standard error analysis for 
reduced-cell edges. Consider the effect of a perturbation 
of a given cell on the parameters to be used in 
matching. Given any primitive cell as input, its edge 
vectors a,b,e are related to the Buerger reduced cell of 
non-coplanar vectors of minimal lengths ar,br,e r by: 

(ar) (a) 

(b,) = N (b), 

(er) (e) 
where N is an integer matrix whose determinant has an 

absolute value of 1. Errors in the original cell are also 
propagated by N. It should be noted that reduction 
may require N to have some rather large integers which 
would greatly inflate the propagated errors. 

Now consider a reduced cell with known errors. 
Such a cell may well perturb to a non-reduced cell. 
However, as long as the perturbations are small, the 
reduced-cell edges of the perturbed cell will consist of 
some subset of the original unperturbed cell's edges and 
its various diagonals, and the new edge will be a 
diagonal of the unperturbed cell only when the 
diagonals are already equal or nearly equal in length to 
the edges. Thus, the worst case will be that in which the 
new edge is a linear combination of the original edges 
with at most unit weights. In such a case, the errors in 
the lengths of the original edges must be combined to 

t • /4 .-/ • ii fir/ i 

f - ' i  J/ 

60 / " .., /-,- { / 
60 910 110 

Beta 
(a) 

(b) 
Fig. 1. A contour plot of the agreement function described in the 

text. This plot is for the positive-square-root solution for cos T. 
The cell is the case described in detail by Gruber (1973) (see 
Table 1). The constraint that the real cell be Buerger reduced has 
not been applied. In this case, the only effect of that constraint is 
to narrow the range of allowed cos y to include only small regions 
near the Buerger reduced cells. Inclusion of that constraint 
obscures the picture. (a) Overview of the a,fl plane in the region 
of interest. The areas in the corners do not admit real solutions of 
cos F. Twenty solutions occur in the figure. (b) Enlargement of 
the lower section of (a). Eight solutions are easily seen and the 
other two are indicated by arrows. Note that among the 40 
solutions in the two branches of solutions for cos ~, there are only 
the five correct cells described by Gruber (1973). 
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discover the error of the resulting edge. Assuming 
r.m.s, errors of approximately equal size, we might 
inflate each error by about the square root of three to 
insure good capture of neighboring cells. 

We now consider the remaining parameters. 
Reduced reciprocal-cell edges admit the same analysis 
as above. Volume is not changed by reduction (except 
for computational imprecision) and changes smoothly 
with perturbations of edge lengths or cell angles. Thus, 
it remains to consider cell angles. Except for pertur- 
bation of edges to face or body diagonals, angles do 
admit a similar analysis. That exception is, however, 
fatal. A switch to a diagonal involves a discontinuous 
and possibly large change in angles. To understand this 
discontinuity, we consider in detail the conditions 
leading to such a switch. A reduced-cell edge will be the 
same length as a face diagonal if any of the following 
conditions are met" 

I cos a l = b/2c 
I cos a l = c/2b 
I cos fil = a/2c 
I cos fll = c/2a 
Icos yl = a/2b 
Icos ~,1 = b/2a. 

A reduced-cell edge will be of the same length as a body 
diagonal if any of the following conditions is met" 

- c o s  a/a - cos fl/b - cos y/c- 
o r  

- c o s a / c  - cos fl/b + cos y/c 
o r  

c o s a / a  - cos fl/b + cos y/c 
o r  

c o s a / a  + cos f l / b - c o s  y/c 

(a 2 + b2)/2abc 
o r  

(b 2 + c2)/2abc 
o r  

(a 2 + c2)/2abc 

(12 equations in all). In considering error propagation 
of angles, one must consider approximate equality in 
each of the above 18 conditions. However, even exact 
equality is not unusual. If a = 60 ° and b -- e, then b - 
e may replace e. Then if ~, :/: 90 °, the new fl will be far 
from the original ft. See, for example, the first two cases 
for cell 'B' in Table 1. Other examples of the 
instabilities of reduced-cell angles are also included in 
Table 1. We note that when none of the above 
equalities is satisfied, there is only one Buerger reduced 
cell. When several of the equalities are satisfied, there 
are several Buerger reduced cells. In the latter case, 
slight perturbations can select any one of the Buerger 
reduced cells as the only Buerger reduced cell (it will be 
the Niggli reduced cell also). It should be noted that 
although any one of the Buerger reduced cells may 
become the only Buerger reduced cell, it may not be the 
one of the cells that was Niggli reduced. Similar 
problems arise with the equalities and inequalities in 
Niggli reduction criteria (Mighell, Santoro & Donnay, 
1969). 

Uses of the parameterization 

Roof (1969) has compiled a table of general and special 
Niggli matrices for each of the 41 reduced-cell types. 
As useful as this table is, it requires searching among 
many conditions and extremely careful attention to the 
cell's standard deviations. A similar table might be 
constructed for our parameterization, but many of the 
centered cells would have even more representations 

Table 1. Reduced cells 

(A) The two nearly identical cells cited by Lawton & Jacobson (1965) which 
have differing Niggli reduced cell angles. 

a (A) b (A) c (A) ¢~(o) fl (o) y (o) 
Reduced real (Niggli) cells 
6.490 10.358 10.359 60.520 71.750 71.761 
6.490 10-360 10.360 108.254 108.246 107.223 

Reduced reciprocal cells 
0 . 1 1 3 0 -  0.1130+ 0.1653 101.079 101.097 115.909 
0 - 1 1 3 0 -  0.1130+ 0.1653 101.097 101.082 115.915 

(B) Perturbations of  the lattice described by Gruber (1973) which has five 
Buerger reduced cells. (1) The five Buerger reduced ceils as listed by Gruber;  
in parts (2) and (3) the lengths of each of the Buerger reduced cells are 
modified as listed - for instance, in part (2)(a)(iii) the cell being reduced is 
a = 2-05, b = 4.00, c = 4.10 A, a = 120.000, fl = 93.583, y = 104.483 °. In 
parts (a), (b), (c), (d), the reduced-cell parameters in the appropriate space 
are shown. In parts (d), V is the reduced-cell volume and ' r '  is the fractional 
difference (in per cent) between the length of 'c '  for a particular cell and the 
next shortest length in the lattice which is not a linear combination o f ' a '  and 
'b'. When ' r '  is zero, there exist at least two Buerger reduced cells. 

(1) Reduced (Buerger) cells 
a (A) b (A) c (A) it(o) fl (o) y (o) 

(i) 2.00 4.00 4.00 60.000 79.200 75.517 
(ii) 2-00 4.00 4.00 60.000 86.420 75.517 
(iii) 2.00 4.00 4.00 120.000 93.583 104.483 
(iv) 2.00 4.00 4.00 117.950 93.583 104.483 
(v) 2.00 4.00 4.00 113.967 100.800 104.483 

(2) (a) a = 2.05, b = 4-00, c = 4.10/~, 
(b) a ,6 

(i) 2-05 4.00 4.051 (i) 61.225 86.715 75.517 
(ii) 2.05 4.00 4.051 (ii) 61.225 79.411 75-517 
(iii) 2.05 4.00 4.051 (iii) 61-225 75.625 79.200 
(iv) 2.05 4.00 4.060 (iv) 112.680 101.268 104.483 
(v) 2-05 4.00 4.054 (v) 116.702 93.979 104.484 

(c) a* '  b*'  c*' (d) V(A 3) r (%) 
(i) 0.2824 0.2937 0.5052 (i) 28.12 1.2 
(ii) 0-2824 0.2904 0.5052 (ii) 28.11 1.2 
(iii) 0.2861 0.2865 0.5052 (iii) 28.11 0.2 
(iv) 0.2824 0.2904 0.5071 (iv) 28.11 1.0 
(v) 0.2824 0.2937 0.5066 (v) 28.11 1'1 

(3) ( a ) a =  1.95, b = 4 . 0 0 ,  c = 4 . 1 0 A  

(b) a # 
(i) 1.95 3.99 4.051 (i) 117-055 93.284 103-778 
(ii) 1.95 3.99 4.051 (ii) 113.142 100.588 103.778 
(iii) 1.95 4.00 4.036 (iii) 113.117 103.530 100.800 
(iv) 1.95 3.99 4.042 (iv) 61.403 80,122 76.223 
(v) 1-95 3.99 4.049 (v) 61-348 87.433 76-224 

(c) a* '  b*'  c*' (d) V(A 3) r (%) 
(i) 0.2824 0-2936 0.5311 (i) 26.76 1-2 
(ii) 0.2824 0.2902 0-5311 (ii) 26.76 1.2 
(iii) 0.2861 0.2865 0.5311 (iii) 26.74 0.4 
(iv) 0-2824 0-2902 0.5292 (iv) 26-76 1.4 
(v) 0.2824 0.2936 0.5298 (v) 26.72 1.3 
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than in Roof's enumeration. Instead, we propose the 
following procedure which is applied directly to the 
non-triclinic Bravais lattice types. The process is 
repeated for each lattice type. The problem may be 
formulated as a least-squares process. The seven para- 
meters defined above as indicative of a lattice are con- 
sidered to be the data. The six real cell parameters of 
the Bravais lattice, a,b,c,a,fl, y, are considered to be the 
independent variables with appropriate symmetry 
constraints for the particular lattice type. Either the 
least-squares matrix can be constructed for all six para- 
meters of the Bravais lattice or only the necessary 
variables may be varied. In the former case, symmetry 
constraints must be applied. If appropriate weights are 
used in the least-squares process, then each result 
provides a measure in standard deviations of the dif- 
ference between the cell of interest and the non-triclinic 
Bravais lattice in question: 

d 2 = [Aa/e(a)] 2 + [Ab/a(b)l 2 + . . .  + [AV/a(V)I  2. 

Minimizing d 2 gives the best cell of the specified type 
and a direct statistical measure of the difference from 
the input cell. It may be necessary to carry out a 
preliminary search on a grid in order to avoid false 
minima. 

A second application is the comparison of two unit 
cells. As in the determination of Bravais lattice type, the 
distortion of one lattice with respect to another can be 
quantified. One could report an agreement factor 
computed as the square root of the sum of the squares 
of the differences of each of the seven parameters 
divided by the standard deviations. Some thought must 
be given to the covariance terms, since we are using 
seven parameters, and there may be fewer independent 
parameters defining a lattice. For example, the cubic 
lattices reduce to one parameter. Thus the measure 
given would overestimate the disagreement by about 
the square root of six. 

Finally, Mighell (1976) suggested that data bases 
containing unit-cell information could be searched to 
identify unknown substances which happen to be 
crystalline. We have programmed our algorithm and 
used it to search the Cambridge Crystallographic Data 
Centre data base. The search is rapid and no false 
matches have been found. As an example, we searched 

using the cell parameters for the high-pressure form of 
benzene, P2~/c, a = 5.417, b = 5.376, c = 7-532 A, fl 
= 110.00 °. With up to 4% deviation in the seven 
parameters, three additional matches are found: high- 
pressure benzene, P21/c, a -- 5.417, b = 5.376, c = 
7.352 (sic) A; dimethyl sulfone, Amma, a = 7.36, b = 
7.36, c = 8.00 ,~; dimethyl sulfone, Cmcm, a = 7.36, b 
= 8.04, c = 7.34 A. In many cases, fewer matches are 
found than would be found if only reduced-cell lengths 
and volume were searched. Two primitive triclinic cells 
from the Determinative Tables (Donnay & Ondik, 
1973) are: a = 7.581, b = 7.646, c = 7.124 A, a = 
106.90, fl = 100.72, y = 115.12 ° and a = 7.604, b = 
7.649, c = 7.109 A, a = 100.52, 13 = 106.78, y = 
115-08 ° . If the comparison is based only on the 
reduced-cell lengths and volumes, the maximum 
disagreement is 0 .4% (in the volume). However, the 
largest disagreement in the full seven parameters is 
1.1% (in a*'). As expected, a number of test searches 
have not missed any compound which should be 
matched. 
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